Sodium Sulfide Attenuates Ischemic-Induced Heart Failure by Enhancing Proteasomal Function in an Nrf2-Dependent Manner.
نویسندگان
چکیده
BACKGROUND Therapeutic strategies aimed at increasing hydrogen sulfide (H2S) levels exert cytoprotective effects in various models of cardiovascular injury. However, the underlying mechanism(s) responsible for this protection remain to be fully elucidated. Nuclear factor E2-related factor 2 (Nrf2) is a cellular target of H2S and facilitator of H2S-mediated cardioprotection after acute myocardial infarction. Here, we tested the hypothesis that Nrf2 mediates the cardioprotective effects of H2S therapy in the setting of heart failure. METHODS AND RESULTS Mice (12 weeks of age) deficient in Nrf2 (Nrf2 KO; C57BL/6J background) and wild-type littermates were subjected to ischemic-induced heart failure. Wild-type mice treated with H2S in the form of sodium sulfide (Na2S) displayed enhanced Nrf2 signaling, improved left ventricular function, and less cardiac hypertrophy after the induction of heart failure. In contrast, Na2S therapy failed to provide protection against heart failure in Nrf2 KO mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S increased the expression of proteasome subunits, resulting in an increased proteasome activity and a reduction in the accumulation of damaged proteins. In contrast, Na2S therapy failed to enhance the proteasome and failed to attenuate the accumulation of damaged proteins in Nrf2 KO mice. Additionally, Na2S failed to improve cardiac function when the proteasome was inhibited. CONCLUSIONS These findings indicate that Na2S therapy enhances proteasomal activity and function during the development of heart failure in an Nrf2-dependent manner and that this enhancement leads to attenuation in cardiac dysfunction.
منابع مشابه
Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner.
Hydrogen sulfide (H2S) therapy protects nondiabetic animals in various models of myocardial injury, including acute myocardial infarction and heart failure. Here, we sought to examine whether H2S therapy provides cardioprotection in the setting of type 2 diabetes. H2S therapy in the form of sodium sulfide (Na2S) beginning 24 h or 7 days before myocardial ischemia significantly decreased myocard...
متن کاملThioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure.
OBJECTIVE The aim of this study was to determine whether thioredoxin 1 (Trx1) mediates the cardioprotective effects of hydrogen sulfide (H2S) in a model of ischemic-induced heart failure (HF). APPROACH AND RESULTS Mice with a cardiac-specific overexpression of a dominant negative mutant of Trx1 and wild-type littermates were subjected to ischemic-induced HF. Treatment with H2S as sodium sulfi...
متن کاملHydrogen Sulfide Preconditions the db/db Diabetic Mouse Heart
29 Hydrogen sulfide (H2S) therapy protects non-diabetic animals in various models 30 of myocardial injury, including acute myocardial infarction and heart failure. 31 Here, we sought to examine if H2S therapy provides cardioprotection in the 32 setting of Type-2 diabetes. H2S therapy in the form of sodium sulfide (Na2S) 33 beginning 24 hours or 7 days prior to myocardial ischemia significantly ...
متن کامل15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملIschemic Postconditioning Attenuates Bilateral Renal Ischemia-Induced Cognitive Impairments
Background and aim: Acute kidney injury (AKI) is a frequent complication of kidney failure with high mortality which leads to brain dysfunction. The aim of this study was to investigate the possible protective effect of ischemic postconditioning (IPo) against brain dysfunction induced by bilateral renal ischemia (BRI). Materials and methods: Male Wistar rats underwent BRI, sham or IPo surgery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Heart failure
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2016